Metrics API¶
Evaluation metrics for classification and regression models.
The foodspec.metrics module provides comprehensive performance metrics for model evaluation, including accuracy, precision, recall, ROC/PR curves, and regression metrics.
Classification Metrics¶
compute_classification_metrics¶
Comprehensive classification metrics (accuracy, precision, recall, F1).
Compute core classification metrics.
Parameters¶
y_true : array-like True labels. y_pred : array-like Predicted labels. labels : sequence, optional Class label order for confusion matrix. average : str, optional Averaging for precision/recall/F1 ('macro', 'micro', 'weighted'), by default 'macro'. y_scores : array-like, optional Probabilities or decision scores (binary) for ROC/PR.
Returns¶
dict accuracy, precision, recall, specificity, f1, balanced_accuracy, confusion_matrix, per_class metrics, optional roc/pr curves.
compute_roc_curve¶
Receiver Operating Characteristic curve data.
compute_pr_curve¶
Precision-Recall curve data.
Regression Metrics¶
compute_regression_metrics¶
Comprehensive regression metrics (R², RMSE, MAE).
See Also¶
- Metrics Reference - Metric definitions and interpretation
- Model Evaluation - Validation methodology
- Examples - Model evaluation workflows