User Guide¶
Purpose: Learn how to use FoodSpec for common tasks (loading data, running analyses, interpreting results).
Audience: Spectroscopy researchers and data scientists using FoodSpec in practice.
Time: 2–3 hours to read core sections; reference chapters as needed.
Prerequisites: Python basics; some familiarity with spectroscopy or food science.
What You'll Learn¶
This guide covers practical FoodSpec workflows: - Loading data: CSV, HDF5, vendor formats (OPUS/WiRE) - Preprocessing: Baseline correction, smoothing, normalization - Analysis: Classification, regression, mixture analysis - Quality control: Validation, outlier detection, reproducibility - Customization: Writing protocols, using plugins, extending FoodSpec
For quick start: See 15-minute quickstart
For theory: See theory section
For API details: See API reference
Example: Typical Workflow¶
from foodspec.io import load_csv
from foodspec.preprocess import baseline_als, normalize_snv
from foodspec.apps.oils import run_oil_authentication
# 1. Load (see: Data Formats & I/O)
ds = load_csv("oils.csv", wavenumber_col="wavenumber")
# 2. Preprocess (see: Preprocessing & Feature Extraction)
ds = baseline_als(ds, lam=1e6)
ds = normalize_snv(ds)
# 3. Analyze (see: Analysis Workflows)
results = run_oil_authentication(ds, label_column="oil_type")
print(f"Accuracy: {results.metrics['accuracy']:.2%}")
# 4. Validate (see: Validation & Reproducibility)
print(f"95% CI: [{results.metrics['accuracy_ci_lower']:.2%}, {results.metrics['accuracy_ci_upper']:.2%}]")
Command-Line Interface¶
- CLI Overview — Introduction to the command-line interface
- CLI Guide — Detailed guide to all CLI commands
- CLI Help Reference — Complete command reference
Data Management¶
Input/Output¶
- Data Formats & HDF5 — Supported file formats and HDF5 libraries
- Vendor I/O — Import data from instrument vendors (Thermo, Bruker, etc.)
- CSV to Library — Convert CSV files to FoodSpec libraries
Libraries & Organization¶
- Libraries — Create and manage spectral libraries
- Library Search — Query and filter spectral data
- Data Governance — Data provenance, versioning, and integrity
Configuration & Automation¶
- Protocols & YAML — Define reproducible analysis workflows
- Protocol Profiles — Reusable configuration templates
- Automation — Batch processing and scripting
- Config & Logging — Configure FoodSpec behavior
- Logging — Control output verbosity and log files
Extensibility¶
- Registry & Plugins — Extend FoodSpec with custom methods
Related Sections¶
- Getting Started — Installation and quickstarts
- Methods — Validation and chemometrics guides
- API Reference — Python API documentation
Use this when: You need comprehensive documentation for a specific feature or workflow.